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ABSTRACT

The commutation relations of the algebra of SU, are
used to construct a simple graphical picture of the irreducible
representations. The graphs are useful in the reduction of pro-
ducts of irreducible representations. A simple systematic method
for the calculation of the generalized Clebsch-Gordan coefficients

is also presented.



I. INTRODUCTION

In the last few years the attention of elementary-particle phy-
sicists has been strongly drawn to the group of three-dimensional unitary
unimodular matrices 5U,. - It appears that the "elementary' particles as
well as an ever increasing number of resonances can rather conveniently
be classified according to representations of this group, in particular the
8-dimensional representations (pseudoscalar mesons 7, K, E n0; vector

£ 3k

p, M, M w; baryons =, N, =, A%) and the 10-dimensional one [Nss , Yl 5

—

*
ORI A ")] In contrast to the simpler group SU,, which plays a role in the

phenomenon of charge independence and which is almost identical with the
familiar rotation group, SUa and its connection with the symmetric group8
is not well known to many physicists. Thus an ever increasing number of
papers which take the mathematical background for granted appear some-
what mysterious to those unfamiliar with the group structure, A recent
review article on Lie groups by Behrends 31:_3._1.4 has done much to remove
this gap in mathematical background; but this paper, covering as it does
many groups of potential interest and many techniques, still leaves some-
thing to be desired in the specific treatment of SUS. This paper in a certain
sense complements the BDFL paper: the problem of obtaining explicit

representations and of reducing products of representations is treated by

lM. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys. (Kyoto)
22, 715 (1959); M. Gell-Mann, '"The Eightfold Way, " CTSL Report No, 20
(1961) Phys. Rev, 125, 1067 (1962); Y. Ne' eman, Nucl. Phys, 26, 222
(1961); Y. Yamaguchi, Progr, Theoret, Phys. (Kyoto), Suppl. No. 11 (1959);
A, Salam and J. Ward, Nuovo cimento 20, 419 (1961); J, Wess, Nuovo
cimento 10, 15 (1960).

S Glashow and J, J, Sakurai, Nuovo cimento 25, 337 (1962); ibid, 26,
622 (1962), R e

3
For example, J, Wess, Nuovo cimento 10, 15 (1960).

4
R, E. Behrends J. Dreitlein, C, Fronsdal, and B. W. Lee, Revs.
Modern Phys. 34, (1962)



generalizing the '"raising' and "lowering'' operator technique familiar from
the simple textbook treatment of angular momentum, For the sake of sim-
plicity, only this technique is worked out in detail; no attempt is made to
give a complete proof of a number of results obtained on the way. The tech-
nique could, of course, be adapted for the treatment of other Lie groups,
but in view of the great interest in SU3 to the exclusion of any of the other
groups, no attempt at generalization is made.

The group is defined by eight generators and, as established
by Lie, 2 only the commutators of these generators are necessary to study
the properties of the group. For example, the rotation group is (almost)

completely defined by the commutation relations

J =1 J
[ 5l R GGk i

among the generators of rotations Ji' In what follows, we shall assume it
to be proved that for SUs’ too, the algebra of its generators (dsles, thelicom=
mutation relations) are all that are needed, and that the representations of
the algebra yield the representations of the group. Aside from the gap—not
proving the above statement and not filling in the mathematical background—
the paper is self-contained and follows the lines laid out in Sec. II, which

reviews i-spin.

I, THE ALGEBRA OF SU2

This section briefly reviews the familiar algebra of i-spin and
its representations, to prepare us for the somewhat more complicated case of

SUB, As was mentioned in the introduction, the algebra is defined by the com-

mutation relations among the operators, and in order to find (i) all the

5
See for example G. Racah, "Group Theory and Spectroscopy, ' Institute

for Advanced Study Lecture Notes, Princeton, N. J. (1951).



operators and (ii) the defining commutation relations of the algebra, we start
with the simplest physical realization of the algebra-—the one which, in fact,
made us interested in SU2 in this connection. We assume that there is an
entity, the ''nucleon, ' which has two states, the ''proton'' state and the ''meu-
tron'' state, which we shall describe by the two-component wave function

(p) . We can construct an operator which converts the neutron to a proton,

n
namely, the raising operator

which has the property that

Its Hermitian adjoint

We can form the commutator of these, and find that

[T+, v = T (I - 1)

where



We also find that
=2 T (11 - 2)
[ry.7,]= 21,
= 27 . I -3
[r,, 7 1= -21_ At = 3)
Equations (II - 1), (II - 2), and (Il - 3) complete the commutation relations;
all further commutators such as T, [T+,'r 11, {73, [Ts"r ]}, and the like
can be expressed in terms of the operators T, T, T, which are therefore
the basic set. In terms of the 2 X 2 matrices, there are also properties

such as

but these are peculiar to the two-dimensional representation only. To obtain
other representations of the algebra, we must use only the defining commu-
tation relations (II - 1,2, 3).

It is clear from these relations that only one of the Hermitian
operators T, (r + 7-_), and i('r_ - "r+) can be diagonalized. The represen-
tation of the space in which these operators act will therefore be chosen such
that 7_ is diagonal—as turned out to be the case in the two-dimensional rep-
resentation with which we started. We label the states only by the eigenvalue

m of 7, for the time being, i.e.,
7 |m) = m|m) . ar - 4)
From Eq. (II - 2) it follows that

-rs—r+‘m>=('r+'ra+2'r+)‘m)=(m+2)'r+1m> (II - 5)



so that -T+‘rn> is an eigenstate of 72 with eigenvalue (m + 2)—hence the

appellation "raising operator'' for e Similarly 7_‘m) can be shown to be
an eigenstate of 75 with eigenvalue (m - 2), If we start with any state in a
given representation, we can generate states with higher and higher eigen-
values by repeated application of T until we reach the state with maximum

eigenvalue lM) This state has the property that
T’M):O. (II - 6)
+

Let us now start with this "highest weight" state, which is
5
unique for an irreducible representation, and generate the whole sequence

of states, We have

T [M):xl]M—Z). (11 - 7)
If the states are chosen to be normalized to unity, 5ilel i f
(m|m):1, (II - 8)
then
N2 = (M7 7 |M)
1 + -
= (M][-r+,'r~] + 'r_'rJM)
:(M]TS(M)=M. (II - 9)

The phases have been chosen such that )\l is real. Note that

(M-2|7 | M) =X, = (M|7 |M-z>*_
- +



Flence

Next consider

Again

In general, if

we see that

We thus find that

’T+\M-2>

xl|M),

T_‘M‘Z> = )»Z\M-‘L) :

"

(M-Z‘T+T_1M-Z>

(M-2|7 7 |M-2) + M-2
-4

2 + M-2 .
)\1 +

T |M=2(p-1)) = A |M-2p),
= P

X
P

2

The "minimum state' is reached when \

p:M+1.

=0, i.e., when

(I - 10)
(il = il
(II - 12)
(11 - 13)
)
(LS 15
(II - 16)



This is the multiplicity of the irreducible representation in terms of the
maximum eigenvalue of Ty The states may be pictured as forming a linear

array (Fig. 1) and the operators Ti represent steps from one point to

Fig. 1, The states of an irreducible representation of SU2
and the action of 'shift'' operators on them.,

another, There is only one state with a given value of m; and furthermore
only one irreducible representation is generated from a given maximum

state |M) We therefore expect that there exists one independent operator
constructed out of T:t’ T which commutes \svith all the 7's and which serves

to distinguish irreducible representations. Such an operator is, for exam-

ple, the square of the i-spin. We write it as

cC = %(7-+'r_ + T_T+) + %7’32 - (II - 17)
Since
[C, T-] = 0’
1
it follows that
c|m>:c]m> (II - 18)

for all m, i.e.,

6

The relation between the number of invariant operators and the number
of pa.ra.rneters necessary to characterize an irreducible representation is
mentioned by L, C. Biedenharn, Phys. Letters 3, 69 (1962).



(m|C|m) =c={(M|C|M) . (I1 - 19)
|| |C]

Now use of the commutation relations yields

¢=%732+%73+T_’r+~ (I - 20)
Hence
c = (M|C|M) = (3MZ + 3 M)
=IM(EIM+ 1) = tt+ 1) (11 - 21)
and the multiplicity is
p=(M+1)=2t+1, (IL - 22)

where 2t + 1 is an integer. This is a well-known result, The following
discussion of the representations of the algebra of SU_ will imitate the one

above as far as possible.

11I. THE ALGEBRA OF SU3

The generalization from SU2 to SU3 consists in enlarging
the set of operators T, Ta of Sec. II.to one which *'shifts' the positions of
three objects, say the proton, neutron, and lambda (as in the symmetric
Sakata model)l in the wave function i . The simplest representation of

A
the shift operators by 3 X 3 matrices is the set



e S { 0 o0
K i = =0 S 0RO S E | = = [Sie8oe Sg
ST i N6 e
. OO {0 O
By \iois OF S0k s g O @), (III - 1)
B e BN
W 0 0 0F 0
. 1 E : 0 0
E . =7|0 : e
a WNb6 5 5 NI b

The factor 1/ N6 is inserted in order to make the notation conform to the
4
canonical notation of Behrends et al,

If we introduce the matrices

. 1B g { 0 20
HIS =8 E . T 03t Hela=r L il (111 - 2)
e Sl 2

we can easily derive the set of commutation relations which completely

defines the algebra., These are

[E.E]=9 E B =0
E T b e
E,. —2]__«/_6E-3’ E_ . 2]—76E3,

el !
[El’ES]_\/—é 258 E_E ] -:/.—6E_2,

(III - 3)

E.E _1=0, [ =t
[E B =0 [EEjia
B e w m e o
2ol = [ Ey B e



i1

Further
[El’E_l] = :/——,;Hl,
EE e 1 (III - 4)
2 _2) 23 H) +2H,,
E _— L H
B E ] -2,\/'3H1+7 27
and
i
[Hl = ]: N3 El’ [HziEll:o:
= 1
[Hy,Eol = 23 By (Hy, Egl = 2B, (I - 5)
Rl )
[Hl,E3]='2'\/—3 Es. (H,, Egl = 3Ea.
[Hl’ H2] =-(0)
Note that
E s Ej. (III - 6)

The relations (III - 3)—(III - 6) completely characterize the algebra. Re-
peated commutators, e.g., {Ea, [Ep, Hi] and the like do not lead to any new
operators.

Our task now is to construct representations of the algebra, We
first note that we may choose our representation such that Hl and Hz’
which commute with each other, are simultaneously diagonal in it, We
label the states in a given irreducible representation by the eigenvalues

of H:L and Hz’ and denote them by |m_, m2>. Then

al
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H, |m.,m,) =m m.,m,_)
i | T2 al , 0o (I - 7)
H, ’ml,m2> =m, Iml,mz) :

As is suggested by the explicit form of the special representation in Eqs. (III - 1),
the operators 6 E NG E_l, and 2 A3 Hl obey the same commutation relations

as 7,, 7 , and 7_ and thus form a sub-algebra. The invariant C takes the form
i 3

T--5(BE B Bl suis, (I1I - g

and it is easily verified that

(25,2, ] =0,
[T2, H,] =0, (I1I - 9)

whereas

Thus T2 is not an invariant operator. It may, however, be diagonalized
simultaneously with H, and H,; and the states ml,m2> should actually be

written as m,,mg; t) with
T2 Iml,mz;ﬂ:t(t+1)’ml,m2;t>. (111 - 10)

The form of the eigenvalue will become evident later. For the time being we
will suppress the dependence on t, and only use it later to classify states
that may, even within a given irreducible representation, have the same

values of m, and m,.



It is clear from Egs. (III - 5) that since

oy
=
i

1
3L ElQ_Il-l-—,\/T?’ )
= ol - B L

E, raises the value m by L /N3 but leaves m, unchanged. The commutation

relations for H,, H, with E, ,, E,, imply the properties exhibited in Table I.

TABLE 1. The "shifting' properties of the generating operators E+a'

Operation 2l B

by eigenvalue eigenvalue
1B raised by :1/_-5 unchanged
B_g lowered by % unchanged
1B raised by —é-i@ rasied by 3
e lowered by —éi—r\/’j lowered by 3
E, lowered by 2—1—'\/:3 raised by 3
E_, raised by E-ig lowered by 3

The properties may be exhibited graphically on a plot (Fig. 2) with
coordinates m, and m. Because of the canonical normalization, the opera-
tors act along the sides of equilateral triangles. This graphical representa-

tion of the operators will be used extensively.

13
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N -

! i I} 1 .
1 i 3 2
o =i = e m
2N3 N3 23 NE

Fig. 2, Graphical representation of ''shift'' operators in m m, plane.

i

A final remark is in order: one can easily check that the commu-

tation relations are invariant under the replacement

[T 1 1

L O I 2 Ha,
' RN

By =B, W s H - 2 H 5 (IIL - 11)
1

E, =E, ,

i.e., under a rotation of Fig. 2 through 120°, The implications of this are
that not only do [El, E_, (1/~3) H,] form a sub-algebra (SU,) but so also
do (E_p, Epy -3 H) - 3 H,) and the set obtained by a 240° rotation. A linear

S 7
combination of E. and E, may also be used to generate a sub-algebra.

=
B. D'Espagnat and J. Preutki, Nuovo cimento 24, 497 (1962).
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IV. THE REPRESENTATION SPACE

In this section, a graphical method will be used to exhibit some
of the properties of the representation space, and in particular, the pos sible

values, m. and m,, of the eigenvalues of Hl and H2. As was shown in Sec. 111,

a,
the operators E, ., E, and E, , are shift operators which transform a given

state into one with eigenvalues such that it is displaced by a distance 1 /3 along
one of the three sides of an equilateral triangle. The states therefore must lie

on the sites shown as solid circles in Fig. 3. The direction AB will be called

the ''1 line,'" AC the "2 line,' and AD the SNlinel !

e ey (e e e [ e S J e « R

/\\ i ,*"‘i/’\“"—7°-r ST

\ : \ \ . : \
>_ - .> o _>_ w08 i b i _/_ ron o 18 NS AN
2 A%
7/ '\ 7 \ N
/ \/ \ / : \0/ \0/' \/ N \

Fig. 3. Possible sites of states in the m m, plane.

For finite-dimensional representations, only a finite number of
sites will be occupied, and our first task will be to learn something about
the distribution of occupied sites. As in our discussion of SU,, we note that
there will be one or more points with maximum value of m, —points of
dominant weight. 1f there are several of them, we choose the one with the
highest value of m,—the point of highest weight. Let the "coordinates'' of
this point be denoted by (M, ,M, ). We shall assume that attached to the
point of highest weight there is only one state Ml,M2>. Then the condition

that it is the state farthest to the right implies that
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= = = v
E, [M\M_) =E, [MM)=E_, |[MM_) = 0. (
Suppose that in addition
E_, MM, =0; (v

then it follows that

B MM

I
o
=
=

2 1M1M2> =6 [E_,,

and

i
=}
=
<

E o [M;M,) =®B[E_,E; ] |M;M,)

Thus E+ !M1M2> = 0 for all a and from the commutation relations for
ta

[E ,E ] it follows that
a’ T -a
M, =M, =0. (Iv
Thus (IV - 2) further restricts the state to be one that is annihilated by all
operators. The state must therefore be the unitary singlet state.

If
E_, [M;M,) =0, v

there are at least two points on a horizontal line (the 1 line). It can now be

shown that either
E, |[M;M,) =0 v
o |M1M2> #0 av
or both are true. This is done by noting that
E_, IMM,)=nN6[E_,E_,] M, M,) =0, (v

which could not be true if both E:3 and E__ annihilated [M1M2>. Hence the

2

boundary of the distribution of sites. near the state of maximum weight must

- 5)

-9
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be one of the three cases shown in Fig. 4.

(3 o o [ ]
o . o _—7 |M M)
V—AlMlM2> . °
o o o 9 »
° [} e
. . P> M M)
L) L] »

Fig. 4. Boundary of the distribution of sites near the state of maximum weight.

Next we would like to show that the boundary of the set of sites

cannot be concave. The occurrence of a situation such as exhibited in Fig. 5

e L]

® 0
@ 3

° ©
° )

° °

Fig. 5. A concave boundary in the m m, plane.

would imply that ‘
E, |a)=o0. (IV - 10)
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Now let
E_, [B) =1 |A), IV - 11)
E, |C) =o |A). (IV - 12)
Then
o\ = (B|E_E,|C) = (B|E,E,|C) =0 (IV - 13)

so that either \ or o (or both) vanish, provided 'A) is nondegenerate. Since
the boundary assumed in Fig. 5 leads to a contradiction, it follows that such
a concavity cannot occur in the boundary.

Suppose now that at the site A there are two states such that

B BN a (IV - 14)
and
(A|A'>:o. IV - 15)
Then
E, |a =0 (IV - 16)
and of course
EEH i fo] (Iv - 17)

The next step is to argue that this implies |B) can never be reached from
1 i g

|A ); and this contradicts the assumption that IA‘) belongs to the same

irreducible representation as |B ). First we note that the simplest non-

direct way from A' to B is via D. However,

1 1 !
E,\E,[4") =(E_E, t g Ea)|A ) =0 (1v - 18)

by (IV - 16) and (IV - 17). It remains to be proved that all paths reduce to
the one via D. This is done with the help of (i) the relations

[E,E] =[E,E_[] = (BB -0 (Iv - t9)
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which, in terms of pictures, imply the deformability of paths like ABC into
ADC as in Fig. 6, (ii) the other commutation relations whose graphical
implication is that, for example, MNO is equivalent to MPO plus MO, and

(iii) the fact that

EE lmlmz) =\ (m,m,) ‘mlm2> (IV - 20)

a @l
whose graphical meaning is that, say, a step ST followed by TS is equivalent
to never leaving S at all. The reader can easily convince himself with the

help of (i), (ii), and (iii) that all paths linking A to B in Fig. 5 reduce to

ADB.
° ® £ @ 1 ® e -1 2 ®
o ® ® s (Y ] ® [ ®
® 7 ® #=-——pC o 9 an ®
7 // ,/ \
@ ] ® A | Gl
I L ) ® Md(-\ jﬁo
o
s 5 ° [ 6 ° ® wP ®
S T
® ) ® ® e -~ —-@ ® ®

Fig. 6. Paths in the m m, plane.

For the purposes of this paper, this is enough ''proof'' that the
boundary must be concave. Figure 7 shows some possible boundary shapes.
We shall show later that all such polygonal boundaries must be invariant

o FEIA
under a rotation of 120 , a result which is not surprising in view of the

8After this work was finished, it was pointed out to me that similar
considerations appear in a paper by E. P. Wigner, Phys. Rev. 51, 106
(1937). I wish to thank Prof. G. C. Wick for this observation, which was
communicated to me by Prof. J. J. Sakurai.
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Fig. 7. Possible shapes of the boundary of the distribution of sites.

corresponding symmetry of the algebra. It is clear that all interior points
represent states; a "hole'' in the middle is excluded by the argument used
to prove the convexity of the boundary.

We have not yet discussed the multiplicity of states (in a given
irreducible representation) at a given site in the (ml,mz) plane. We shall
first show that at the boundary points the multiplicity is one, if it is assumed
there is only one state of highest weight. For the situation pictured in Fig. 8,

we have

A\ |BI=E_, |M). (v - 21)
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Fig. 8. Some of the forbidden steps are denoted by dotted lines.

If there is to be another state ‘B') at the same site as ‘B) we must be able
to reach it from lM) by another path, i.e., for example E_E llM should
not be equal to A, lB) However, if |B )= E_ E o ]M) then it follows

that

x
1 1 1
E E_, [M)=(E_E s+ FE_) |M)=—E_, |M) " |B). @V - 22)

siog R :/-g

This implies that |B> is a multiple of IBI ). Similarly, another path from M

to B could be represented by
1\ SR
|[B")=E,E_E_, |M).

However, it is also true that

E,E_,E_,[M)=EE E, | M)

A E BB

1

MIELE_ ] |B) (Iv - 23)

which is proportional to |B> and again implies that ‘B”) is a multiple of lB Do
To prove the nondegeneracy of a boundary point in a less exhaustive

way, we could assume that at the site B there are two states lBl) and ‘B2>,

with
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E, B,/ o [MTE IV - 24)
E, |B2> (o |M>
However, from this it follows that

|<I>> = c. |B1> e IB ) (IV - 25)

2

has the property that
E, |® =o0. (IV - 26)

It is also true, however, for any state at the site B that
E, |® =E_, |® = 0. (v - 27

Conditions (IV - 27) and (IV - 26), however, imply that |¢I>> is a state of
maximum weight; and this contradicts the assertion that |M> is the only
such state. This argument can be carried out for all boundary points, since
by "'carrying'' the assumed degeneracy along the boundary in a counterclock-
wise direction to the site B, we reduce all such cases to the one discussed
above,

The multiplicity of interior points need not be one, but it turns
out to be one whenever the boundary is triangular. Consider the situation

exhibited in Fig, 9. We have

B =El . v - 28)

Fig. 9. Points in the vicinity of the maximum-wei

!
ght point for a triangular {
boundary, {
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and since

[E-l’E—z] =0,

this is equal to E_ZE_l lM), so that whether we go along MBA or MCA we
get the same state. In the same manner we can convince ourselves that no
matter what path we choose, it always leads to the same state |A>

It is not hard to use this information to prove that the state |D> is
unique, and similarly for the points on the next layer of points (lying on the
dotted line in Fig. 9). We can then start all over again to prove the state-
ment about the next layer beyond that, etc., etc.

If the boundary is not triangular (see Fig. 10), the next layer of

points has two states at each site. To show this, define

|a,) =E_, |M),

(IV - 29)
|az) = E_Eg [M).
e o o e o
X
[ ] (] (] o ® ([ ]
YA
e o o o Mo
Z =B
® (] ® (] ([ ] [}
w
(] ® ® [ ] o
Fig. 10. Points near maximum point for a non-triangular boundary.
With the help of the commutation relations we readily show that
1
(A, IAl) S M, ,
1 1
(A, |A) =— <M -— M (IV - 30)
ol l 2 26 2" B i ) 1
A/ i e =
(A, |A2>—4<'\/_3 M, M;(«B Ml+M2+3>.
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The states |A1> and |A2) will be linearly dependent if and only if there

exists an a such that

|®) = cos a |A )+ sina |A,)=0. (IV - 31)
There will be a solution provided
2
(o a ) (A & ) - (A, [A ) 20, (IV - 32)
i.e., provided
(M, + N3 M_)}M, - N3 M) M, +N3) =0. (IV - 33)

Now

Ml:i\/?)Mg

corresponds to the triangular cases. To show this, note that for a triangular
case E IM) =0orE,, |M> = 0; i.e., the requirement i(Ml/Z'\/’Zw) + 3 M, =0
holds for one sign of the first term. If M, # + N3 M., there is no solution
(M, = 0). Hence there are at least two independent states.
To show that there are no more than two, note that if one of the
states is
(A =E M) (IV - 34)

then the other may be chosen as
A, =E E_+E_ ) |M) (IV - 35)

so that it is orthogonal to |Al), e

<Al'|Al> = 0) (1 S5
On the other hand

aila - (M|E,|A,").

Also
1
EllAl ) = p ’M)
Hence d
p=0,
el

1
E a7} =o0. (IV - 3


file:///E_gE3
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1f there is a third independent state, it may be chosen orthogonal to both

|A,) and |A,'). If this state is denoted by |a,'"); it obeys

(Al 4 =ifada W) s, (IV - 38)

This implies that

ll
o
-

E1|A1”>

1
iz 9 ) s 0,
and consequently

1
ELE A% 0
This, however, implies that

2l e R e w A s Iv - 39)

which is the condition that IA1”> be a maximum state. Since |M> is the only
such state, there cannot be more than a two-fold degeneracy at the site A.

We may now start at the site A and by moving along the line parallel
to the boundary (Fig. 10) show that at the site B there are exactly two states.
This can be continued all around the layer one step in from the boundary.

It is only a little more tedious to show that the multiplicity at the
sites of the next layer (X, Y, Z, W in Fig. 10) is three. In fact the multi-

8
plicity increases at each step until the layer has a triangular shape, after

which the multiplicity ceases to increase. A simple way to visualize this is
to view the boundary as the base of a truncated pyramid and the successive
layers as contour lines on it. Then the top of the pyramid is always a tri-
angle, and the multiplicity increases with altitude.

These last statements have been proved here only for special cases.
They should be easy to prove quite generally by use of some powerful
techniques due to Weyl,9 but such departures from a purely practical dis-

cussion of the representations is outside the scope of this paper.

S
See references in the review paper of R. Behrends et al. (reference 4).
See also the reference quoted in footnote 8.



The degenerate states may now be labeled by their i spin, i.e.,

by the quantum number T2 of Eq. (III - 8) which may be written

= 2
T2 - 3(BIE St Bl ) S

=6E_,E, + 3H,+ N3 H,

6EL Bt NE H HBRE S (IV - 40)

The state ‘M) is an eigenstate of T2. In fact, since
EIIM) =E, |MlM2> =00,

it follows that
¥2|M1M2>:«/'3Ml (V3 M, + 1) | M M,). IV - 4t)

The states E_1|M1M2>, (E_l)2 |M1M2>, o= =iiete., aze (alside
from normalization constants) the other states that belong to the i-spin
multiplet of which |M1M2> is the highest member. Clearly the multiplicity
is 2t + 1;i.e., in terms of M, it is (243 M, + 1). The state ]Al) is part of
this multiplet. The state |AlX ), which is orthogonal to |Al> and which
satisfies

= |A1'> =

is also an eigenstate of ’?["2. The value of m, at the site A is Ml - 1/«/3, s0
that ]Al|> is the highest member of an i-spin multiplet of multiplicity
Z[N/E(Ml - L/N3)] +1 =243 M, - 1.

The general features are perhaps best illustrated by examples
(Fig. 11). In the next section we shall work out a formula for the multiplicity
once the shape of the boundary is given. Note that there is only one tri-
angular boundary on a given pyramid—the triangle is the top surface of the
pyramid. For the hexagonal figures, €.g., cases (b) and (d), the triangle

reduces to a point. Thus in all cases there is only one T = 0 state per
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=% ® -] T:E
° T =0 ® eT=1,0
(a)n=2+1=3 S e
2
(b)n=2+4+2=8
) ° (] e = 4
5 3
Sise fel e T.-— @@ e
e ¢ o T=1 o @ oT =2,
. @ T:_i' ® @ ° T:E)
2 2
¢ T=0 O -0 O T =
(c)n=4+3+2+1=10 (d) n = 27
° [ [] o ® T =5
. 5 3
e ® © @ ¢ T=33
o ® @ o T=3,2,1
B 32
L4 o T:E}EJE
® @ e s @y i, O
30
° @ o T—E;'Z
o e o T=1
(e) n = 60

Fig. 11. Some examples of patterns of irreducible representations. Points
represent multiplicity one, points with one circle represent multiplicity
two, etc.
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10 :
irreducible representation, this state lying at the tip of the triangle (along

the vertical axis). We shall return to this point later.

V. THE MULTIPLICITY OF AN IRREDUCIBLE REPRESENTATION

We begin by considering the simplest representations correspond-

ing to the two graphs shown in Fig. 12. In each case, the tip of the triangle

/ 1 1
0 i
(M, -5, M,) (M., M) L e e
- 2
e = L (M, ==, M) (M, M)
TR S CEE R sl R A2 19772
Fig. 12. The representations 3 and Q:k.
corresponds to an iso-singlet state, i.e.,
t=M o 1 0 vV - 1)
15 SN St v -
Hence
M, =M ' = =
FANE
In the first case (representation labeled by 3) we have
E, |MM,) =0, (V -2)

i

0
The fact that there is only one T = 0 state per irreducible representa-
tion was pointed out to me by Prof. M. Bolsterli.



29

o o g
(Eg,E gl [MM,) = ( 5 Mate M>‘M M, )= 0k
Hence
M, = % . (V - 3)
In the second (representation labeled by 13:::) we have
E,,|MM,) =0, (V - 4)
Lo @o g
[E.,E_.]|M;'M;') = <z—1ﬁ M M2'>IM1' Vi ) e
Hence
M,' = -5 (v - 5)

Just as all representations of SU_ can be obtained from the
reduction of products of the two-dimensional representation (all i-spin states
can be built out of products of doublets), so can all representations of the
algebra of SU, be built up out of products of 3 and g: In a product of the
form

(3)* @ (3°) (V - 6)

there will be many irreducible representations, but the one with highest

weight will have

athb
M. =
at, 2’\/3

o Mg
M-S

The irreducible representation with this as the highest weight is the one that
we want to study.

For a given (a, b), what is the shape of the polygon? The i-spin
multiplet to which the state of highest weight belongs has

a+hb
2

t=nN3M, = (V - 8)
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so that there are (a + b + 1) points on that line.

How far up can we go? We have

a+b a—b>
5 =0
23 6

-3

and write

ath a-b>_
=

a+b-1 a.—b+3>
PNE 8 :

PaE 6

3

Then

>
=
|

2o <a+b a-b
1 7_,\/'3’ 6 -3°'3

at+hb a-b>
2837 6

f<a+b a-b

a+hb a-b>
2N3 7 6

B B

\[E_B,ESJ
b
0

Next we write

a+b-1 a—b+3>

at b -2 a-b+6>
Zr\/f—'i = 6 VAT

NG 6

2

Then

a+b-1 a-b+3’

2 <a+b—1 a-b+3
)\2:

‘ [E__,E,] +EE

2'\/?) Z 6 3 2’\/3 J 6 /
il 2.l a7
S
Similarly
2 2, b-4
T
2 2 b - 2(p-1)
N +
D
Hence
2 1
= — = o b-p+1
Mo g [P+ (b-2)+ + (b-2p+2)] Bl eangt)

7 = 9

(V - 10)

(v - 11)



Hence \ 2
P

= 0 when p = b+ 1, so that we can go upward b steps.

In the same way we can show that we can go down a steps along

the 2 line. At the top line

at+tb-b _ a

m e
1 Z'\/—3 2'\/.3;

i.e., there are (a + 1) sites. At the lowest line

a+b-a b

m. =

L 8

i,e., there are (b + 1) sites,

o
Similarly, we can show that the figure has symmetry under a 120

rotation. Figure 13 below shows the shape of the figure. Let us take a = b.
VAN
\
/ \
/ \
7 \
/ \
/ a \
o D _,"_.\\
2 a+1
b at?2
p at+b+1
b “,\
+b
// N a
\
/ N\ at+hb-1
/ \
/ \
/ \
/ \ ;
/ \
s Ll e B A e
D, dhelgs ke polygon for the representation (a, b). The top of the pyramid

is the equilateral triangle ABC.

31
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(The reverse choice would be just.the same figure upside down.) At the

lowest level of the pyramid, the number of states is

(at+1) + (a+2) +(a+3) ++ - - +(a+b) + (a+b+1)+ (atb)+ - « « +(b+3)+ (b+2)+ (bt1).

At the next level, the number is

a+(at+t )+ -+(@a+b-2)+(atb-1)+(atb-2)+- -+ (b+1)+b.
And at the next,
(a-1)+- - +{a+b-4)+{a+b-3)+(a+b-4)+---+(b-1),

etc. The sequence ends with a triangle when the last number in the sum is

unity, corresponding to the tip of the triangle. This occurs after N =b + 1

lines.

The number of states in the first line is

(a.+b+1)(a+b+2)+(a+b)(a+b+1) ala+ 1) b(b+ 1)
2 2 = 2 7 2

S 1)2 = a(aZ+ 1) ? b(b2+ 1) :

The number of states in the second line is

(a - 1)a (b - 1)b
2 D :

2
faitih ~ i

The number of states in the nth line is

(a+b+3-zn)2-(a+1'n)z(a+2-n)_(b+1-n)z(b+z-n)
— 0 B b St b 3)2-(a+1)2(a+2)—(b+1)2(b+2)

(v - 12)

il

S

n
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The multiplicity is
b+t
b )+ t)(a + bt o2), (V-13)
o= 4 Tl
a well-known formula for the dimensionality of a representation labeled by

(a, b).

Table II gives the isotopic content in an (a, b) representation. The

TABLE II. The isotopic content of an irreducible representation..

N Values of T
a-b a
3 e 2,
a-b e ol
+b-1 =
a-b+2 ahb-2satb-4 atb-6 = = a-bi2
3 2 / 2 7 2 Z 2 2
a.-b_{_1 Bl aakheod aunlbesb a-b+1
3 2 4 2 Z 2 2 2 2
a-b a+b a+b-2 a+b-4 a-b
3 e 2 i % et =)
a-b 1 at+b-1 a+b-3 a+b—5... a-b-1
Bl 2 ? 2 2 2 2 ) 2
a-b 2 adbheo? adbhba4 0 Bobos
e 2 2 2 2 2 2
&, = 19 b
- a Z
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table uses the notation

¥ 2w (V - 14)

This checks with the requirements that (i) for a unitary singlet (M, = 0)

the hypercharge should be zero and (ii) the operators E,,, E, 5 change the

hypercharge by unity.

Y = (a - b)/3 on which the state of highest weight lies.

This is the form for a = b. Note the asymmetry about the line

As one reads up from

this line, the number of multiplets decreases; but as one reads down,it remains

constant until the iso-singlet is reached.

Thereafter the number of multiplets

decreases until there is only a single one, as illustrated for another particular

case in Fig. 14.

Yii=i3
Y =2
Yoo
Y=0
Y = -1
Y = -2
Y = -3
Y =-4
occurs

It will be shown in Sec. VII that the iso-singlet always

5

T:E (] (-] @ [+] ® -]

G T ) e © © © o 6 o

5.3

T,_E) -Z;—Z— L] [ (-] <] [} ] Q ®

T2 0 ¢ ¢ © o © o o
Sesoaall

e ® © @ 2 © e

T=-2,1.0 e © o o ®
Sl

T:E’E ® © o o

T =1 e & o

Fig. 14. Multiplicities for the case a=5, b=2 (N=81).

at

(V - 15)
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It is also easy to see that the "height' of the truncated pyramid is given by
b and the side of the equilateral triangle which forms its top has lengtha - b
(see Fig. 13).

Vi. THE REDUCTION OF PRODUCTS OF REPRESENTATIONS

In physical applications, the reduction of products of irreducible

AL,
representations is particularly important in obtaining decay widths. We
shall first develop the general method and then illustrate it by carrying out

some reductions, in particular the 8 ® 8. We shall obtain the wave functions
2

found by Glashow and Sakurai and also obtain matrix‘representations of the
E in the 8- and }&—dimensional representations as an illustration of the

a
present method.

Consider first the basic states 3 and 3\ (Big-15)E SIthic rathen

el i il b B
(2'\/'3; g) (2,\/.’3) 6) ( ) 3)
) g B2 .
15 ZB ¢! e o

Fig. 15. The states 3 and ,,3M with their m m_ labels.

simple to work out the effects of the operations of Eto. on the various states.

B e 0 WL
2«B’i6>4x'z\f3’_ 7 ( )

Sinlee

E

=a,

o

llSee reference 2; also S. Glashow and A. Rosenfeld, Phys. Rev. Letters

10, 192 (1963).
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it follows that
B e
St
\'2 \/_3)

Hence

il 1|
— t—|E_E
<2\/’3’ 6

(VI - 2)

The value of \ is the same for all legs of the triangle, because of the symmetry

o
under 120 rotations.

To determine the signs,

3 1 LN
r 283’ 6 )
Hence
)\(3) =
For 3,
3 1 1
: 23’ 6 />
Hence
)\(3*

note that for 3
-

1
EZE—SE-l m—,'g>
1 1
E_\E_ E s
el e l>
NG 2n3’ 6
)
NG
T 1 1
‘ElE-ZES ‘2'\/3,-€>
=E <EE >’ i
i) 3 2[\/—3 6 /
:_1_)\2 il 1>
6 23’ T 6
) i

(VI - 3)
(VI - 4)
(VI - 5)
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The matrix elements of E = in 3 will be represented by

1
o N6 D
@ +
s i
NG NG
SO

12
in which the states are simply labeled by (D_I_, D So) (doublet, singlet)

0}

and the matrix elements in 3 by

a
0
0 t
N3 “Nb
. >
6_ =6 5,

Thus, for example,

(VI - 6)

12 .
We use the notation of J. J. Sakurai, Proceedings of the International

Summer School of Physics at Varenna (to be published).
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If we take the direct product of two representations, the wave

functions will be

mymy) = [m, M m P m, & m ), (VI - 7)
where
m, = ml(l) i ml(z),
(VI - 8)
(1) (2)
m, = m, +m2

A simple way to obtain the sites of the product wave functions is to draw lines
from the origin to the states in one representation and vectorially add the same
"weight diagram' of the second representation to each state of the first one.
The weight diagrams for 3 and 3::: are shown in Fig. 16 and the addition of the

weight diagrams in 3 ® 3 is shown in Fig. 17.

3

N

Fig. 16. Weight diagrams for 3and 3.  Fig. 17.

Addition of weight
diagrams in 3 ® 3.

It is clear that the product is not irreducible, because for an

irreducible representation the boundary points have multiplicity 1. In this

example the reduction is easy to carry out if we first take the boundary points
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and see what is left over. The remainder is shown in Fig. 18; i.e.,

e

2®3 =003 (VI - 9)

o~

.

The remainder for 3 @ 3 is shown in Fig. 19. ‘Again, as may be seen from our

e A

Fig. 18. Reduction of 3 ® 3.

Fig. 19. The reduction of 3 ® 3,
e

discussion of multiplicities, there cannot be three points in the middle for

an irreducible representation: two belong with the boundary points and one

remains. Thus
3@3 =86 {VE = 10)
- L ad ol

1.
s
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Before working out 3 ®~§ in detail, we note that 8 has two states
at Y = 0. Hence all Y values in 8 are integral. The same must be true in
all states that occur in ji@g @38 ® . . . . However, since the value Y for

the state of highest weight in (a, b) is

Y = 2M

1

S (VI - 1)

we see that

a = b (mod 3) (VI - 12)

for all irreducible representations contained in8®g8®8M® -

Let us now proceed to the explicit reduction of i@»; (Fig. 20). Let

ADOGO D+0'0
: !
; |
i |
AL D s il
- Gl + - = ~, .
e = o e
D 6
D
e D5 1\ S, 9 +70
|
|
i
= /’7 i T
iR e
— o s
- A
5,6 S &

Fig. 20. The states in 3@ 3",
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k (VI - 13)
|2, 6 de bl
s, 8 ==,
1S, 60)§|E°)
Then
B . D st e )
Sz =E DS L (D, e
D 6. )= (D 8§ )
:%‘OON/ZI“L'., (VI - 14)
Writing
e
E(|D050>-|D+6_>)E|zo> (VI - 15)
leads to
i
E_l‘2+>:7_3-|20>0 (VI - 16)
Again
E |3 1D5)—1—D6>\
1‘ 0 B ,\/gl O ,\jé‘ - j
:-1—|z> (VI - 17)
’\/»3 D
E Z+)—ED6):——1—DU>:——1—P> (VI - 18)
3| 3 3| + 0 %I +0 ,\/gl ?
E_2|Z+>:E_2‘D+6O):% soao>:%fglz°>, (VI - 19)

E_l(P> :E_1|D+Uo):r§_€:|DOUO):%!N>, (VI - 20)
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1 e
E_|E%) = E.y |80 850 = = ToSe Sad e =R (VI - 21)
t s
2| ND :E_2|D0g0):-%’D06_>:—$|2 0 (VI =22
1 =
B El = |50 /- -@{Doa_>:%|z e (VI - 23)

Next consider

1
E Bl =E .|D o} =7 s P O

This state is not identical with 120 ). It must therefore be a linear combination
of |20> and another state at that point, the iso-singlet in the 8 which we shall

call [AO ). If we write
|Ag) < |S o) +a [D 5 )+ D, 6 )
and determine a and B from
Q=R =, (VI - 24)
we find @ - f = 0 so that, after normalization,

'\/1-a

Ay :a|500'0>+ P

|D5>+|D5)) (VI = 25)

The state is not yet determined. If we take the symmetric com-

bination

lX)z%(lD+6_)+ 1D050>+ lso"o”’ (VI - 26)
we observe that

By |X) = Eyp|X) = B, |X) = 0, (VI - 27)
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i.e., ‘X) is theh}h state in the decomposition

sk

3@ 3 :N%GB/}M.

Gomes e
We also require that

Rl ) = O (VI - 28)

This fixes a such that
il

1A0>:%

(| DEser 1D+6_>-2‘SOUO>). (VI - 29)

We can now calculate the remaining matrix elements:

(ZVE P! :2—1\/—-3-,
(A, |E_,|P) = -25
and similarly

1
<201E—31N> = o '2—\/—3 ’
(A, |E.a|N) = -2,
(e, 2 = - 75 -
(R|EL|E) =2,
(2°|Eq|E) = 5175
<A0|E3‘EO> =3

We can conveniently summarize the matrix elements by labeling the lines
connecting different states on the&weight diagram. Figure 21 shows the
results for 8; the dotted lines indicate the transitions to the AO state.
These matrix elements are essential in the reduction of 8 ® 8
which we now carry out. The elements of one of the 8 will be labeled by

= - G 0 ~ O
(Z+, >2, = ) ELENG AO, = ’:O), those of the other by (n , m , 7 g I

) —_— )

Ko’ ﬂ07 K, K°). The "vector addition' of weight diagrams is shown in



44

Fig. 22, in which the dots indicate the original 8, the crosses the states in

ey

Fig. 21. The matrix elements of the E+o. in the representation ﬁ?\,

X K¢ ¥
X% XXé X oXy{ X
: £§ (¥ 5
p Ory &y 18 1
LAY U,/::[i‘ it ){
%
XX 8% ¥o e
AU
% ¢y X

Fig. 22. The multiplicities in 8 ® 8.

We note that the corner points are nondegenerate. They must

belong to the largest representation. Since for 8 we have (a, b) = (1, 1) this
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must be the representation (2, 2) whose dimensionality is 27. This is the
first one we reduce out.
We start with the state of highest weight, ‘2:+ -n+ ). It is clear from

Fig. 22 that repeated application of E_, will yield a quintet. The quintet lies

-1
on the M_ = 0 line and therefore is associated with hypercharge Y = 0. The
results, starting with ‘Z-‘-, 'rr+>, are

E_l|2+'rr+>

A
% E
20nT) + |=Fn0) e 1 Ao -
E_lq l > '\[2< |Z}Tr @‘ZOTTO>+:/T3‘ZOTTO>—'\/—3|ZTT>
L2 i e 1 - 4
:E</§’ZO1TO)~UE-1ETT>—@]ZTTD:

etc., where in each case the normalized wave functions have been enclosed

+y S B =T n0)
ZO +@|E”O>’J;Q n,\/z ﬂ);

in the parentheses. The full 64 combinations will not be worked out. Instead,
the results will be listed and the not-entirely-trivial steps will be pointed out
along the way.

The states with T =2, Y =0 are

’ Z)+Tr+ )

P
é(]zo{’) 3 =%,
N/% [ ) ‘?1@ |z+w'> - %fe_, ]z'n+>,
—1—(|z°n'> S
lZ_'rr_>«
To get the first state of the quartet for Y =1, we apply E to

3
|Z+Tr+> and then repeatedly apply E_,. The results for T = 2 Yo = [fare
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et o),
\[3 (=it P>)+@ Rl et ),

( |[Z°K°)+ |7°N)) - = [ERE s

:\/3 NG
1 -0 -
@(IZ}K)i- |7 "N ).
3 : :
The quartet with hypercharge T =5, Y = -1, obtained in an
analogous way, is
'\fz(|z K°) + I‘rr =00,
3 mRey Ut g s L et e
,\[3 —_ f\/’é — £l
ZOeKE i i BIRY ¢ (=
1 S =
-\7_2( ]Z K >+ I‘IT = )).

We observe that the two quartets (which are symmetric with respect to each
other about the origin) can be obtained from each other; the states which
make up one quartet are obtained by reflecting the other quartet in the

origin, i.e., by the transformation

ST SRR

Ry i Bl s

N H EOJ KO H -Roa



This transformation is called the hypercharge-conjugation transformation,
or the R transformation. It will be used to simplify our work.
i Nhe (sl N e Z)triplet, obtained by starting with
[BK"), is
2,
=l e
N2 :

|NK).

Then applying the R transformation to this yields the (T = 1, Y = -2) trip-

let
EEER
1 : AL
gl s i e
Pl i
(] ® (]
o @ )

Fig. 23. States left after 19 of the 27 have been removed.,

We have obtained 19 of the 27 states in the highest repre-

sentation contained in_§\®,§. In the pattern of points (Fig. 23), the degen-

eracy of the points in the layer immediately inside the boundary layer

leads us to expect another triplet with Y = 0 and two doublets with Y = £ 1.
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This leaves one state, which must be an isosinglet with Y = 0. To find the
first doublet (with Y = 1) we construct

|px*) - (|Pe®) + |K'=00) - 5 (|Pa®) + [KTA%)

e
23
s s : 3
and note that this is not orthogonal to the state in T =35, Y = 1 at the
same point. A state orthogonal to that one may however be obtained by

- . : o : ;
taking an appropriate linear combination of E_, ‘PK ) with the third of

3
the states (T ==, Y = 1). The state and its partner are

=
o 0 HA g S 0 +.0 __L .0 +
N[66(|pﬂ>+|Kz>) xfzo(IP”HIKA)) N[30(l21<>+l“ N)),
726 (| Nw Oy + |KOZO)) + V% (|Nq%) + [KOA%)) + —;6<|Pw' T ),
Then for T = % Y = -1, the R operation yields
=000y L RIS ¢ o (| B RoA s N =Tk™Y),
= (=l e N+ = T + | ))+«[3“o(| = )+ 2K
Lot o SR E R =y L " 0)y,
\[66(|_n)+|1< =%) N[2_6(1_,n>,+11< A%)) N[3_0(12 R+ | al=y

To constructthe triplet, we take a linear combination of
+
E( IZ K+> + l'rr+P>) and the corresponding (T = 2, Y = 0) state, such
that it is orthogonal to the latter. The (T =1, Y = 0) triplet obtained in

this way is

—i[—é (R K=Y - J%, Wi o e )

1 =0 p 5 b
L (IR (o) - g (PR (2D - )+ 8%,

\[5 (INK)+ |K°E /—30 |Z7n%) + |7 7A%).



49

The set of 27 states in the representation is completed by

taking a linear combination of E__ | T = el e (edeh 0
=2 2 2 z 2 o VA

stat i = =
es with (T = 2, Y = 0) and (T = 1, Y = 0) such that it is orthogonal to

the last two. The result, for which T = 0, Y =0, is simply
1 27 3 =
>040 e 0.0% _ (1= +7~
= )+ 5 18°0%) {40(|PK>+IKH>)

_\/% |NK®) + |KE =

To go on from here, we note that we started the Y = 1 quartet

|ZTr )+lZ'rr)

with the symmetric linear combination (1/«[2)([Z+K+) + lP-rr+>)., Use of the

antisymmetric combination orthogonal to it would clearly lead to another re-

presentation — the 10-dimensional representation with T = % , Y = lfor which

dz i =t )),
ié(]z+1<°) = e \[—13(12"16’) - |=0B)),
\[6 |ZK e [ s %(]20K°)g|w°N>),

1 & =
s
Note that the results are always antisymmetric combinations, so that all of

1 be orthogonal to the 27 — which is as it should be.
to the first of the

them wil

To get the next iso-multiplet we apply E_,

above states and get the (T =1, Y = 0) triplet
S (2 = (=) - (PR - |20k - (=" %) - [a%=)),
1 B =4 140 120
. zTE‘lz ) - BT >)+N3(|PK T - |EK >)-,N3(1NK°> | 2°x")
i % (IZO"’]O>" IAO’ITO)),
(|= "= —|2w>)+ N [ °))+— (270 - [A%" ).

. 2'\[3
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1
Next apply E _, to the first of these to get the (T S g Y = -1) states
L =0_0 0RO 1 s ety oL mon0y L AR
zva(l‘“ Y- |Z°RN - (2K Yo g et - (B - (AR,
L (=) - [BOKTN) £ - ([BTRO) - 2% T+ S(ETn") - [AK.
e NG 2

Finally by inspection, we obtain the (T = 0, Y = -2) state

1 — g e
_:TZ(I':‘ KO> =, I,'_“OK >)-

Fig. 24. The patterns for 10 and 10 .
Pasanl AN

The resulting pattern is shown in Fig. 24, This is the 10 re-

presentation, It is clear that by starting with the antisymmetric combination

%(]PK")— INK"Y)

we can generate such a "triangle" upside down by application of E__ . This
will be the 10 representation, which may be obtained from the 10 by hyper-

charge reflection. The states, listed for completeness, are the following.



5
For T=0, Y= 2:

— (|Px°) - |NK).

FOI‘T—"—%,YZI:
1
Tl bl |Z°K+>)+ o (}=t%®) - fNn e % (|Pn® - | A% ),
2\[3(an°) - | =°k%) - 16(|2'K+> - 2wy % (Jnn®) - [A°K®)).
Powr L= i, W s 0
5 (=) - |20+ o (|2°KT) - [PRD) 4 Lty - |20,
1 -+ & 5 =
_qu Bl =" ))er3 (j=2"x") - |PR™)) -Ei/—3(l.:,°K°)—iNK°)),
= _% (i=° 50 = | A27)),
2\{3 Q- 20 ) - .J_ dER N as i
And finally for T = % N2 oilg
= (=R - |=°= "),
1 - e 0RO _ [E0O
- 12K>-|Hw>)+ NB(lEIM [E2 w0y
= (|ZTR) | E 2 (=KD - |20,
= (27K - |27,

A glance at Fig. 22 shows that there still are many states on the Y = 0 axis.,
As we go one step in from the boundary there are six products (the terms
with T =1, and Y=0 are lTr+ZI°), \w°z+), iAOTF+>, k""oK) EPRO‘), 12+n°>)
of whiczh we have found four: the quintet and triplet in 27 and the two trip-
lets in }Agu and ,}VQjF. Thus two more triplets are expected. We now try to

construct a state orthogonal to the states that have already appeared, viz,
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— (|2°n+> + |z+n°)),

N2
—2{75 d=ts |z0nh) - \/_2 (|PR®) - |=°K)) - % (|ztn°) - N
2_:/3'(lz:+ﬁ°) = ]2°W+)) - 72 (|PK®) - |30f>)+ % (iz"'no) 2 [A°w+)),

A little algebra shows that the states orthogonal to these must have the general

form

e e e e | =N}

+a2{f—32-(|m_<° )+ lz°K+>)+(|2+n°>+ P

The two parts have different symmetries and are orthogonal to each other, so
that it is natural to use each part separately to generate an octet each (as
will be seen).

Starting with the aatisymmetric part, we obtain the normalized

(T =1, Y = 0) states
AR EAUNE —= (PR - =",
1 = - _* 1 - e 1 = o
-t - (2T - g (PRTY - [ETR D 4 g (INKC) - [2°K

713(|2”n°) ==t ) :[% (INK ) - | =K.

The remaining two doublets and the isosinglet are obtained in the standard
way. They are listed below for completeness.

ik
ForT——Z-,Y—l,

+

1
_:/g([zﬂLKO) & lN'n' ) Bzr% (| Pr® ) - i20K+>)+ (| E leKJr)))

N

72—(]?’w">~§$“l<+>)+ (Ne® ) - |Z°K% ) +

o

1
0 (|N2°) - [AK® D).



1
For T = = S
= 5 ¥ 1:

& UET) - = k) s
__\/Z(lz_ﬁ(])'l u ))-m
Ter T =0 Ve =0k

%(IPK—> = :=K+))+ =5

For T = 1, Y = 0, the symmetric

3 .
'JIZB(l A+ (2o + [

2

N/'% [="n°)+ |A%w >)+V10

1
ForT:—Z, VW = ilg

i

NEh (2 ) |A0K>)+«/20

f;dN 2 e Y

1
FOI‘TZE,Y:-i;

dzo |:°n°>+ | A°K ) -\/20

E ey A0 g
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2\[3 (|20 =°) - IZORO))*‘ % (=2 IAOROH,
(=S =K % Ve o e

= (|NK°) - [E°K").

octet is

s ),
INK® )+ |E°K*) -ﬁ%(IPK‘ b = e

G e =,

e ”"J— (=) + [Ny,

- o
R >)=\,;5(|Pv )+ |ZK).

3 o
|20 °>+lZK>)‘V10 \’*w)+il>:K o

,\[;) lz=n°)+ lA°K—))+g(IE‘“0>+ ‘ZOK‘=>) '»\/Tf)(lz' &) + \EOW=>).
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For D =0, ¥ =—0:

715 |=°=%) - %|A°n°)+ % (=t a s (2=
: . t = -
_Z—:E(IPK Y+ J2 KN - g (INR® )+ [E°K)

We have now

27+ 10+ 10+ 8+ 8 =63
states, and there clearly remains only the unitary singlet. Its wave function is
totally symmetric, namely,

_2_:[—?: = | A%n% + |2+1r_)+ lZnﬂ+)+ | PK™) + [E’K“')

+ INR®) + | 2K ).
This concludes our reduction of 8 ® 8. This method can be
used for other reductions. Once the ideas are clear, short cuts can be taken

with confidence. For example, consider the reduction of 8 @ 19. The addi-

tion of weight graphs yields the pattern shown in Fig. 25, The boundary is

Fig. 25, The states for 8 @ 10,
NN M
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seen to have a maximum-weight point with a = 4, b = 1, Hence the multi-
plicity of that representation is 35. The boundary points other than the
corners are doubly degenerate, and removing these corners leaves a hexa-
gon with two "steps' on each side., This just corresponds to the represen=
tation 27. Inside that we can only inscribe 10 and § (Fig. 26) if we take note

of the fact that all representations have a = b (mod 3) as shown before. Thus

Fig. 26. The reduction of 8 ® 10.

A very useful observation = is that in each irreducible re-
presentation there is only one isosinglet state. We can thus learn how many
irreducible representations there are in the decomposition and something
about the value of -—i— (a.i - bi) for these representations, labeled by the un-

known numbers (ai’bi)' Thus ~§\® 10 has the isotopic content:

o

Y=, e

W )

g W=4, s

1 1
The isosinglets come from =i, T E)B @m (T = oil, &S ——2-):Loy E=0" T:O)B(—'B
(e @, W= )y, O0s 0] = 1), 6 (Y = 0, T =AY, End (e = T:_Z—)8 ()
(y=-1, T=75 )0 - Thus there are four irreducible representations in
(1,1) ® (3,0), one of which must be (4, 1). «The four are such that for two of

Z
them -3 (a-b) = 0 and for two it is -2.
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The wave functions which we have obtained allow wus to find
the matrix elements of E:‘L_‘1 in the 10, 1~9\ , and 27 representations in a man-
ner analogous to the way in which we found them for the 8 repre sentation.
The matrix elements for 10 are exhibited in Fig. 27. Those of /1\9: have all

signs changed.

Fig. 27, The matrix elements of E _ in the representation 10.
ta AN

The techniques developed in this section will now be used to
prove a very impbrtant theorem: In the reduction of the product §“® NNV\”
where Aliis some irreducible rep’resentation, y[\will occur no more than twice.
This theorem will be proved diagrammatically, Figure 28
shows the right-hand top corner of the weight diagram of some representation
N, with the multiplicities at each site of N indicated, When the weight of NSﬂis

added vectorially to this graph, the result is the points labeled with crosses
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‘0 T 5
' ig. 28. The graph is not complete but the multiplicities at the points
A (si
(six), B (two), C (one), and D (two) are correct, regardless of N, pro -
id : , : S
vided N is not triangular, (If it were, there would be only one state belong -

ing to N at the site E, instead of two, and no state at F.)

X xx [D] x[C]

P
e
[x
!
28,
>
3
=
=<
£
lo3]
i

aX 3X L >
: ' i i
[E]

Fig. 28. Some multiplicities in 8 ® N, The line denotes the
original boundary of N.

Now the maximum state in I/}IAQ AE}/\will contain C, one each of
the states at B and D, and (from our multiplicity rules) two states at A,

The remaining states at B and D are contained in two irreducible represen-
tations in N @ ,§v3 since a single one would have to have a concave boundary
DAB-... Each of these irreducible representations ®uses up" one of the
states at A. This leaves two states at A, and either could belong to an NN\A
This establishes the theorem, If N is triangular, the fact that it cannot
occur more than once in '§v\@ Nl}f can be shown in an analogous way.

With the help of the powerful "Young tableau® techniques, it
can be shewn that actually I;Iv\occurs exactly twice in §“® /1\1 unless it is ¥tri-
angular® (a or b = 0); in a triangular case it occurs exactly once. With a
little more attention to the states at the points A, B, C, » « -, the methods
developed above could undoubtedly be us ed to prove this stronger result, But

for our purposes (Sec. VII) the theorem proved above is sufficient.
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VII. THE INVARIANT OPERATORS

In our brief discussion of SU, (Sec. II),we noted that each
irreducible representation was characterized by a single number, the
eigenvalue of Tg4 for the state of highest weight. This one-parameter
characterization is reflected in the existence of one invariant operator
(C in Eq. II-17) that commutes with all the elements of the algebra.

For SU_,, we have seen that two integers (a,b) completely
characterize an irreducible representation; and by the same token we ex-
pect to be able to construct two independent invariant operators C, and €,
each of which commutes with all the elements E:ta’ H,, S of the algebra
and (of course) with each other. In order to construct these operators, we
follow a method outlined by Okubo, = whose paper includes a direct proof
that there are only two operators.

We introduce the notation

1 1
El = % M12 B E—l = _\76— M21’
1 1
E2 = :/E M15 ) E_g = 1\/[31J (VII - 1)
el 1
E, = e Mg, » % = NG M, -

In the 3 X 3 matrix representation,M is seen to be the matrix that has

AB’
unity in the AB position and zeros elsewhere., From this observation, it is

obvious that the commutation relations in that representation, and hence
generally, are

M M = - =
[ AB’ CD] BBC MAD 6DA MCB' (AT g

3
S. Okubo, Progr. Theoret, Phys. (Kyoto) 27, 949 (1962).



Similarly

1
2B

Hence

We can then identify LI and H, from the relations

1
(1, EL1] = % [ M ]
. (VI - 3)
3 _g (Mll' Mez"’
e 1
2 He =[5, 500= ¢ Do M,
1 (VII - 4)
=T M, - M)
i i Y
SHy =B, B ) Mo M) (VII - 5)
i\
% (Mll+ M22—ZI\/[33 )i
i (VIL - 6)
23 My, - M, ).

On the other hand, M,,, M,,, M,, are not defined completely in terms of

H., and H2

aL,

we find

If we impose the condition that

M,,* Mt M35: 0, (VII - 7}
Mll = H2+ '\[3 Hl’
N e e (VII - 8)
MBS = —ZHzo

Now we consider the operator

= ) 1 VII - 9
& % Mp Mep { )

5



This operator satisfies the commutation relations

X M = M M =
[ AB’ CD] ; AF (GBC FD GFDMCB)
it ; @ rcMap ~ 4 apMcr! Men
= X = i =
5BC AD ‘SADXCB (VII - 10)
From this it follows that
€= ) Ria=NG i (VII - 11)
o AA B AB "BA
commutes with all MCD; i.e., it is an invariant operator. It is also easy to
see that
€= ) MupMpgMg, i s 12

AFG
is also an invariant operator. Of course the operators

g =i M oM
3 2
I Yels AB  BC CD DA
etc., will also be invariant, but we only need two to classify the irreducible
representation.

If we write

H, +\3H «bE; N3 EZ\
M= NG B H2 - N3 Hl NG Es : (VT ~ 13)
N6 E_, N6 E_, -2H,
we have
g B Tr M2, (VII - 14)

€. = Te M=. (VII - 15)



Both are easily written down in terms of Ej: , H, and H,. The first is
a

C. =6 (H2 2
at (2+H1 +E1E—1+E-1E1

+ E
SRl L R R e E.) (VII-16)
and using the commutation relations, we can write this as

C, =6 (H2 2 2
1 (= 2 2B e, st 2mEi R 2R B e

H, ). (VII-17)
The usefulness of these operators may be illustrated by using

them to find the position of an isosinglet (on the assumption that it exists) in

an irreducible representation. The singlet state must satisfy

E =(0); =
e (VII-18)
Hence
1
-'\T{Hl l ) =0,
iise.,
m, = . (VII-19)

The value of m, will also be desired. For the representation

in question, whose highest weight is (M, , Mg), we have

2
G (o, (I M 000 M + My (VII-20)

For the singlet state,
@ | Oea = |0, m,?
=6 (mz2 +2E_2E2+2E3E_3)‘0,m2). (VII-21)

We also calculate

c, = (MM, |C, M M) (VII-22)

61
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It turns out to be

3
C, = —6M2 + 18 MlZM2 e 9IME S 9M22
(VII - 23)
+ 123 M, M+ 683 M, +6M,.
Also one finds that
C, |0gm2> = [ =6m 2t 9im e s8I S
(VII - 24)

+ 18 (1-m WE_E_ + E E_J] |9, m_ )

Hence the condition onm, is

C1"6m22 =G +6m23-9m 24 3m,

2 2
12 18 (1 - ma)

which, after a little algebra, can be written

(m, + 2M,)(m, - M, - &3 M, - 1)(m, - M, + N3 M, + 1)=0. (VI - 25)

Moreover the singlet must lie between the top and bottom lines of the graph,

1y since

(N3 M, -M,). (VII - 26)

N

1
= (r\/3Ml+M2)Sm2 <

Then by use of

N3M, -3M,= b20,

it is easy to see that only the root

m, = -2M, (VII -~ 27)

is acceptable, a result quoted earlier in Sec. IV.
In conclusion, for completeness, we briefly discuss the mass

14
formula of Gell-Mann and Okubo. In Eq. (VII - 10) we found quantity XAB

12
The considerations which follow cannot be made completely satisfactory

without going into the analysis of tensors of SU,, which we do not want to do.
The discussion leans rather heavily on some (here unproved) similarity to the
rotation group.



which had the same commutation relations with MAB as MAB does itself.
Any quantity like this will be called a vector operator in analogy with the

SU, (or the rotation group) definition of a vector operator as one that obeys

the commutation relations

a0 (VII - -28)

The vector operators in the rotation group are just a special type of irreduc-
ible tensor operators; and the more general irreducible tensor operators in
SU, could be constructed in the same way. We do not do this, however, be -
cause such a program would take us somewhat beyond the simple goals set
for this paper.

We will, however, spend a little time on the vector operators =
in particular on their matrix elements between the states of a given irreduc-
ible representation, i.e., on (})I“, m, m) IXAB |’1\>I“, gl ool Y. The analogous

problem in the case of the rotation group is solved with the help of the Wigner-

Eckart theorem. There one finds that
<j,m|vk]j,m-):f(j) (j,mleIj,m'>. (VII - 29)

The proportionality of (j, m |Vkl j,m') to (j, m I J'klj, m') follows from the
facts that V transforms like the j = 1 representation of the rotation group
and that, in the reduction of D (1) @ D (j), the irreducible representation D (3)
occurs only once. In the case of SU, , XAB transforms like the 8 represen-
tation, We have already shown that in the reduction ofﬁ ® I)Imﬂ EL ordinarily
occurs twice. Thus there will be two terms on the right-hand side of the
generalization of (VII - 29) to SU, . The form of the Wigner-Eckart theorem
must be

(a,b;m,' m} |X la,b;mlmz)

12 AB

= (a,b;m{mz' IMABla,b;mlmz ) £(a,b)

¥ (a’b;mla m ! l %‘/MAC MCBla’b;mlmz) g(a,b). (VII - 30)
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In his discussion of the symmetry-breaking interactions,
Gell-M a.rml proposed that these terms have the transformations character-
istic of what we called a vector; i.e., the symmetry violation has the
transformation properties of the H, operator in the 8 representation. We
thus want

{a,b; m 1981 IXSSIa,b; m m2>

1 1

= f'(a,b) {(a,b; m, m, ]H |abmm>

o, by (e, by m ZM3CMC3|a,b;mlm2). (VII - 31)

Now
CZ;:M3CMC3:6 (B E FE.E, % HZ = %,.
But
€ G2 2 {E GE L} 28 E SRl Sk S ECh
kel
-é G, :% % b é (T2 - H2) + H,
Thus
0 % €, - (T2-H2) - 3H,

This leads to the result that

m, )

{a,b; m, m, |X33| a gy

=Aa,b) + B(a,b) Y
He (o b) [TiTr 1)-%3{2],

15
since H, = Y. This yields the mass formula of Gell-Mann and Okubo.

i
2

15
The above derivation is just a synopsis of the content of reference 13.
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It should be noted that for bosons, invariance under charge
conjugation demands that the mass spectrum be invariant under Y - -Y,
Furthermore, the boson polarization operator is what would be calculated
in field theory and it gives the corrections to the square of the boson mass.

Hence, for bosons we are justified in writing

p2= o2+ 6p,? [T(T+1)-% Y27,

For nucleons,
BM Y -
M= M, + 1 + &M [ (T + 1) Y217.

And for the triangular representations, for whicfx

1
T = j:—Z'Y+1,
we get

M= Mg+ &M, Y.

In all cases in which it has been possible to associate a set
of i-spin multiplets with a single representatlon of SU,, the mass formula
of Gell-Mann and Okubo has worked very well. 5 The only deviation is in
the prediction of the w mass in terms of the p and K masses. In this
situation, however, as pointed out by Sakurai, = an important perturbing
influence may be the possible existence of the unitary singlet vector g,
evidence for whose existence is beginning to come in,

These remarks conclude our discussion of the structure of
SU, . Current work in the exploration of SU, in elementary-particle physics
is more dynamical in chara.cter?;-7 papers on this subject do not dwell on the
purely kinematic aspects of the subject. It is hoped that this paper will

serve to make advances in this field more accessible to a larger group of

physicists.

16
J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962).

17 :
See for example R. Cutkosky, J. Kalckar, and P. Tarjanne, Phys.

Letters 1, 93 (1962).
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